24 The Critical Function

1. Explain what is neutral geometry. What is deifference between Pasch geometry, protractor geometry and neutral geometry?
2. Let ℓ and ℓ^{\prime} be two lines in neutral geometry. Show that, if ℓ and ℓ^{\prime} possess a common perpendicular then $\ell \| \ell^{\prime}$.
3. Let ℓ be a line in a neutral geometry and let $P \notin \ell$. Let D be the foot of the perpendicular from P to ℓ. (i) If C is on the same side of line ℓ as P such that $m(\measuredangle D P C)=90$ show that then $\overrightarrow{P C} \cap \ell=\emptyset$. (ii) If $m(\angle D P C)>90$ show that then $\overrightarrow{P C} \cap \ell=\emptyset$.

Definition (least upper bound). If \mathcal{B} is a set of real numbers, then $r \in \mathcal{B}$ is a least upper bound of \mathcal{B} (written $r=\operatorname{lub} \mathcal{B}$) if (i) $b \leq r$ for all $b \in \mathcal{B}$; and (ii) if $s<r$ then there is an element $b_{s} \in \mathcal{B}$ with $s<b_{s}$.
4. Find the least upper bound for each of the sets: (i) $\mathcal{B}_{1}=\left\{\left.-\frac{1}{n} \right\rvert\, n \in \mathcal{N}\right\}$; (ii) $\mathcal{B}_{2}=\{\sin (x) \mid x \in \mathbb{R}\} ;$ (iii) $\mathcal{B}_{3}=\left\{x \in \mathbb{R} \mid x^{3}<2\right\}$.

Definition (critical number $r(P, \ell)$). Let ℓ be a line in a neutral geometry and let $P \notin \ell$. If D is the foot of the perpendicular from P to ℓ let $K(P, \ell)=\{r \in \mathbb{R} \mid$ there is a ray $\overrightarrow{P C}$ with $\overrightarrow{P C} \cap \ell \neq \emptyset$ and $r=m(\measuredangle D P C)\}$. The critical number for P and I is $r(P, \ell)=\operatorname{lub} K(P, \ell)$.
5. Let ℓ be a line in a neutral geometry and let $P \notin \ell$. Let D be the foot of the perpendicular from P to ℓ. (i) If $m(\measuredangle D P C)=r(P, \ell)$ show that then $\overleftrightarrow{P C} \| \ell$. (ii) If $m(\measuredangle D P C)>r(P, \ell)$ show that then $\overrightarrow{P C} \cap \ell=\emptyset$.
6. Let $P(a, b) \in \mathbb{H}$ with $a>0$. If $\ell={ }_{0} L$, find $r(P, \ell)$.

Definition (critical function $\Pi(t)$). The critical function of a neutral geometry is the function $\Pi:\{t \mid t \geq 0\} \longrightarrow\{r \mid 0 \leq r \leq 90\}$ given by $\Pi(t)=r(P, \ell)$ where ℓ is any line and P is any point whose distance from ℓ is t.
7. Prove that in the Euclidean Plane $r(P, \ell)=90$ for every line ℓ and every point $P \notin \ell$. Hence $\Pi(t)=90$ for all t.

Definition (HPP). A neutral geometry satisfies the Hyperbolic Parallel Property (HPP) if for each line ℓ and each point $P \notin \ell$ there is more than one line through P parallel to ℓ.

Definition (Euclidean geometry, hyperbolic

 geometry). A Euclidean geometry is a neutral geometry that satisfies EPP. A hyperbolic geometry is a neutral geometry that satisfies HPP.8. Prove that $\left(\mathbb{R}^{2}, \mathcal{L}_{E}, d_{E}, m_{E}\right)$ is a Euclidean geometry.
9. Prove that $\left(\mathbb{H}, \mathcal{L}_{H}, d_{H}, m_{H}\right)$ is a hyperbolic geometry.

IMPORTANT RESULTS (The Critical Function)

(24.1) Let ℓ be a line in a neutral geometry and let $P \notin \ell$. Let D be the foot of the perpendicular from P to ℓ. Then $\overrightarrow{P C} \cap \ell=\emptyset$, whenever $m(\measuredangle D P C) \geq 90$.
(24.2) In a neutral geometry and let $P \notin \ell$ and let D be the foot of the perpendicular from P to ℓ. If $m(\measuredangle D P C) \geq r(P, \ell)$ then $\overrightarrow{P C} \cap \ell=\emptyset$. If $m(\measuredangle D P C)<r(P, \ell)$ then $\overrightarrow{P C} \cap \ell \neq \emptyset$.
(24.3) Let ℓ be a line in a neutral geometry and P be a point not on ℓ. Then there is more than one line through P parallel to ℓ if and only if $r(P, \ell)<90$.
(24.4) Let P and P^{\prime} be points in a neutral geometry and let ℓ and ℓ^{\prime} be lines with $P \notin \ell$ and $P^{\prime} \notin \ell^{\prime}$. If $d(P, \ell)=d\left(P^{\prime}, \ell^{\prime}\right)$ then $r(P, \ell)=r\left(P^{\prime}, \ell^{\prime}\right)$.
(24.5) In a neutral geometry, the critical function is nonincreasing, i.e., if $t^{\prime}>t$ then $\Pi\left(t^{\prime}\right) \leq \Pi(t)$.
(24.6) In a neutral geometry, if $\Pi(a)<90$ then $\Pi(a / 2)<90$.
(24.7) In a neutral geometry, if $\Pi(a)<90$ for some real number a, then $\Pi(a)<90$ for all $t>0$.
(24.8) (All or None Theorem.) In a neutral geometry, if there is one line ℓ^{\prime} and one point $P^{\prime} \notin \ell^{\prime}$ such that there is a unique line through P^{\prime} parallel to ℓ^{\prime}, then EPP holds.

